Optimal Lipschitz Extensions and the Infinity Laplacian

نویسندگان

  • M. G. Crandall
  • L. C. Evans
  • R. F. Gariepy
چکیده

We reconsider in this paper boundary value problems for the so-called “infinity Laplacian” PDE and the relationships with optimal Lipschitz extensions of the boundary data. We provide some fairly elegant new proofs, which clarify and simplify previous work, and in particular draw attention to the fact that solutions may be characterized by a comparison principle with appropriate cones. We in particular show how comparison with cones directly implies the variational principle associated with the equation. In addition, we establish a Liouville theorem for subsolutions bounded above by planes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions

This article considers the problem of building absolutely minimizing Lipschitz extensions to a given function. These extensions can be characterized as being the solution of a degenerate elliptic partial differential equation, the “infinity Laplacian”, for which there exist unique viscosity solutions. A convergent difference scheme for the infinity Laplacian equation is introduced, which arises...

متن کامل

Optimal Regularity for the Pseudo Infinity Laplacian

In this paper we find the optimal regularity for viscosity solutions of the pseudo infinity Laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem.

متن کامل

Vector-valued Optimal Lipschitz Extensions

Consider a bounded open set U ⊂ Rn and a Lipschitz function g : ∂U → Rm. Does this function always have a canonical optimal Lipschitz extension to all of U? We propose a notion of optimal Lipschitz extension and address existence and uniqueness in some special cases. In the case n = m = 2, we show that smooth solutions have two phases: in one they are conformal and in the other they are variant...

متن کامل

An Explicit Solution of the Lipschitz Extension Problem

Building Lipschitz extensions of functions is a problem of classical analysis. Extensions are not unique: the classical results of Whitney and McShane provide two explicit examples. In certain cases there exists an optimal extension, which is the solution of an elliptic partial differential equation, the infinity Laplace equation. In this work, we find an explicit formula for a suboptimal exten...

متن کامل

An image decomposition model using the total variation and the infinity Laplacian

This paper is devoted to a recent topic in image analysis: the decomposition of an image into a cartoon or geometric part, and an oscillatory or texture part. Here, we propose a practical solution to the (BV,G) model proposed by Y. Meyer . We impose that the cartoon is a function of bounded variation, while the texture is represented as the Laplacian of some function whose gradient belongs to L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002